Powiedz o tym miejscu
pl

Krótko po wystrzeleniu eksplodowała rakieta nośna wahadłowca Challenger; zginęło 7 astronautów

Nie ma jeszcze zdjęć z wydarzenia. Dodaj zdjęcie!
Data wydarzenia:
28.01.1986

Katastrofa promu Challenger, do której doszło w Stanach Zjednoczonych, nad stanem Floryda, o godzinie 16:39 UTC w dniu 28 stycznia 1986. Zespół wahadłowca „Challenger” rozpadł się na skutek uszkodzenia pierścienia uszczelniającego w prawym silniku rakiety dodatkowej na paliwo stałe (SRB), które powstało w 1. sekundzie lotu. Uszkodzenie uszczelki spowodowało wydostanie się w 45. sekundzie jęzora ognia o powiększającej się długości, padającego na zbiornik zewnętrzny promu kosmicznego (ET) oraz mocowanie rakiety SRB do ET.

W ciągu parunastu sekund ogień wypalił dziurę w zbiorniku i spowodował oderwanie się dolnego mocowania prawej rakiety SRB. Wywołało to dezintegrację zespołu wahadłowca w wyniku sił oporu aerodynamicznego. Niemal natychmiast potem zniszczeniu uległ zbiornik zewnętrzny. Na pokładzie promu zginęła cała siedmioosobowa załoga misji STS-51-L.

Challenger Explodes

Przedział załogowy i wiele innych fragmentów zespołu zostały odzyskane z oceanu po długiej operacji poszukiwawczo-ratunkowej.

Katastrofa spowodowała 32-miesięczną przerwę w programie lotów wahadłowców i powołanie przez prezydenta Stanów Zjednoczonych Ronalda Reagana specjalnej komisji Rogersa mającej wyjaśnić przyczyny tragedii. Komisja ustaliła, że organizacja pracy NASA i przebieg procesów decyzyjnych w agencji miały kluczową rolę w doprowadzeniu do katastrofy. Menadżerowie NASA wiedzieli, że projekt wykonawcy silników dodatkowych, firmy Morton Thiokol, zawierał potencjalnie niebezpieczny błąd. Nie potrafili jednak właściwie go wskazać. Zignorowali także ostrzeżenia inżynierów dotyczące wystrzeliwania promów w dni tak mroźne jak 28 stycznia 1986. Nie zaraportowali odpowiednio tych zastrzeżeń swoim zwierzchnikom. Komisja Rogersa sformułowała dziewięć rekomendacji, które NASA miała wdrożyć przed wznowieniem programu lotów wahadłowców.

Z powodu obecności na pokładzie nauczycielki Christy McAuliffe, transmisję „na żywo” ze startu oglądało bardzo dużo dzieci i młodzieży szkolnej. McAuliffe miała być pierwszym nauczycielem wysłanym w ramach programu „Nauczyciel w Kosmosie”. Katastrofa natychmiast stała się wydarzeniem medialnym. Niektóre badania wykazują, że po godzinie od tragedii wiedziało o niej 85% Amerykanów. Tragedia „Challengera” wywołała wiele dyskusji o aspektach bezpieczeństwa inżynieryjnego oraz o etyce pracy. Zainspirowała także powstały w 1990 film telewizyjny pt. Challenger.

Opóźnienia i warunki przed startem

„Challenger” pierwotnie miał wystartować 22 stycznia, jednak opóźnienia wcześniejszej misji (STS-61-C) spowodowały przełożenie startu najpierw na 23 stycznia, a potem na 24 stycznia. Odłożenie startu na 25 stycznia spowodowane było złą pogodą w Dakarze, gdzie znajduje się jedno z lądowisk awaryjnych. NASA postanowiła skorzystać więc z lądowiska w Casablance jako awaryjnego, ale ponieważ nie było ono przygotowane do pracy w nocy, start i tak musiał zostać przełożony na rano czasu lokalnego. Zła pogoda nad Centrum Lotów Kosmicznych imienia Johna F. Kennedy’ego wymusiła odłożenie startu na 27 stycznia, na godzinę 9:37 czasu EST.

Start przełożono o kolejny dzień z powodu problemów z włazem wejściowym promu kosmicznego. Na początku niepoprawnie działał jeden z mikroprzełączników wskazujących poprawne zamknięcie włazu. Następnie jedna ze śrub przeszkadzała personelowi w usunięciu zatrzasku z włazu orbitera. Gdy zatrzask został w końcu odpiłowany i zastąpiony, boczne wiatry nad lądowiskiem promu przekroczyły limity dopuszczalne w procedurze awaryjnego powrotu do miejsca startu. Na osłabnięcie wiatru czekano aż do końca okna startowego, co wymusiło kolejne opóźnienie.

Na 28 stycznia prognozy zapowiadały niezwykle zimne poranki. Temperatura miała spaść do –0,5 °C, najniższej temperatury dopuszczalnej przy starcie. Niska temperatura wzbudziła obawy u inżynierów z firmy Morton Thiokol, kontrahenta NASA odpowiedzialnego za budowę i nadzór nad zewnętrznymi zbiornikami promu kosmicznego. Podczas telekonferencji wieczorem 27 stycznia inżynierowie i menadżerowie z Thiokol omawiali wpływ warunków pogodowych z menadżerami NASA z ośrodka im. Kennedy’ego i z Marshall Space Flight Center. Kilku inżynierów wyraziło obawy, przede wszystkim Roger Boisjoly, który wyrażał je już wcześniej, o wpływ temperatury na właściwości gumowej uszczelki łączącej elementy SRB. Mówili, że jeśli uszczelka O-ring miałaby temperaturę poniżej ok. 11,7 °C, nie ma gwarancji, że właściwie pełniłaby swoją funkcję. Twierdzili też, że nocne przymrozki niemal na pewno ochłodzą uszczelki poniżej dopuszczalnej temperatury. Jednakże ich uwagi zostały oddalone przez menadżerów z Morton Thiokol, którzy zarekomendowali przygotowania do startu według niezmienionego planu.

Z powodu ochłodzenia, na platformie startowej zespołu startowego nr 39B w Centrum Lotów Kosmicznych imienia Johna F. Kennedy’ego zebrała się duża ilość lodu. Co prawda pracownicy Centrum przez całą noc usuwali go, jednak inżynierowie głównego wykonawcy promu, Rockwell International, nadal wyrażali obawy co do jego obecności. Ostrzegali, że podczas startu lód może oderwać się od powłoki promu oraz rakiety i uderzać w ich poszycia. Menadżerowie z Rockwell powiedzieli szefowi programu wahadłowców, Arnoldowi Aldrichowi, że nie mogą zapewnić całkowitego bezpieczeństwa promu podczas startu, ale nie wystosowali oficjalnej opinii firmy sprzeciwiającej się startowi. Aldrich zdecydował więc tylko o przesunięciu startu o godzinę, by dać czas na ponowną inspekcję stanowiska startowego i usunięcie lodu. W jej trakcie stwierdzono, że lód się już roztapia, a „Challenger” miał być gotowy do startu o 11:38 rano czasu wschodniego USA.

28 stycznia – start i awaria

Oderwanie się od ziemi i wznoszenie

Jako że prom nie posiadał „czarnej skrzynki”, zapis wypadku powstał na podstawie danych telemetrycznych, przesyłanych na Ziemię przez prom natychmiast po dokonaniu każdego pomiaru, analizie fotograficznej startu, a także na podstawie komunikacji głosowej między centrum kontroli misji a promem. Wszystkie oznaczenia czasu podane są w sekundach po starcie i odpowiadają znacznikom czasowym telemetrii najbliższym opisywanemu zdarzeniu.

Na 6,6 sekundy przed startem odpalone zostały trzy główne silniki promu kosmicznego (SSME). Przed oderwaniem się od ziemi, w wypadku anulowania startu, SSME mogą zostać bezpiecznie wyłączone. Moment odpalenia rakiet na paliwo stałe (SRB) uznaje się za początek startu (T=0). Dla misji STS 51-L chwila ta nastąpiła o godzinie 11:38:00,010 czasu wschodniego USA. Następnie zwolniono bolce mocujące rakietę do stanowiska startowego, ramię wentylujące parujący wodór zostało odepchnięte od zbiornika zewnętrznego promu, ale nie zostało przytwierdzone do wieży na stanowisku startowym. Na fotografiach widać jednak, że ramię nie wchodzi w ponowny kontakt z promem – zostało więc wykluczone ze zbioru czynników mogących spowodować katastrofę[7]. Inspekcja postartowa wykazała także, że brakuje czterech sprężyn od wspomnianych wyżej bolców, ale one również nie zostały uznane za możliwą przyczynę tragedii.

Późniejsze analizy zdjęć ze startu pokazały, że w czasie T+0,678, przy końcu prawego SRB (niedaleko połączenia z głównym zbiornikiem) pojawiły się silne wyrzuty ciemnoszarego dymu. Ostatni taki wyrzut rozpoczął się w T+2,733 i trwał do T+3,375. Ustalono później, że te „buchnięcia” były wywołane otwieraniem się i zamykaniem powierzchni poszycia końca prawego SRB wibrującego z częstotliwością drgań własnych wahadłowca 3 Hz. Poszycie rakiety dodatkowej nadymało się wskutek ciśnienia przy zapłonie. Metalowe części odginały się od siebie tworząc szczeliny przez które przedostawał się gorący gaz o temperaturze ok. 2760 °. Pierwsza uszczelka typu O-ring miała za zadanie uszczelniać właśnie te przerwy, ale niska temperatura otoczenia sprawiła, że pasta termoizolacyjna nie przylegała dokładnie, przez co ciśnienie gazów powstałych przy spalaniu nie wepchnęło tej uszczelki w przewidziane dla niej zagłębienie. Drugi O-ring nie znajdował się w prawidłowym miejscu na skutek wygięcia się metalowych części. Nie było bariery dla gazów i obie uszczelki pod ich wpływem wyparowały na długości 70° łuku. Jednakże powstający przy spalaniu paliwa stałego tlenek aluminium tymczasowo uszczelnił przerwy w łącznikach, zastępując niejako uszczelki, ale tylko do momentu, gdy został wyparty przez płomienie.

Gdy zespół wahadłowca opuścił wieżę startową kontrola została przełączona z centrum kontroli startu w ośrodku im. Kennedy’ego do centrum kontroli misji w Houston. Z uwagi na rosnący opór aerodynamiczny w 20. sekundzie lotu, silniki główne zaczęły zmniejszać ciąg, nadając promowi graniczną wartość prędkości przewidzianej do lotu w gęstej części atmosfery. W T+35,379 silniki główne zmniejszyły ciąg do 65% wartości nominalnej. Zmniejszył się również ciąg silników SRB dzięki odpowiedniemu ukształtowaniu profilu materiałów pędnych. Pięć sekund później, na wysokości około 5800 m, „Challenger” przekroczył prędkość Ma=1. Gdy w T+51,860 prom przekroczył wysokość maksymalnego ciśnienia dynamicznego (Max Q), rakiety SRB i silniki główne zaczęły ponownie zwiększać moc (SSME do 104% mocy nominalnej).

Pióropusz ognia

Gdy prom osiągał punkt max Q, wpadł jednocześnie w najsilniejszy prąd powietrzny, jaki kiedykolwiek został odnotowany w czasie programu lotów wahadłowców.

W T+58,788, kamera śledząca prom zarejestrowała tworzenie się pióropusza ognia przy końcu SRB, w pobliżu jego połączenia z zewnętrznym zbiornikiem paliwa (ET). Zapalony gaz zaczął przedostawać się przez powiększającą się szczelinę między elementami rakiety dodatkowej, o czym załoga „Challenger” i kontrola misji w Houston nie wiedziały. Siła napotkanego prądu powietrznego wyrzuciła tlenek aluminium, który do tej pory uszczelniał przerwy powstałe na skutek uszkodzenia pierścieni uszczelniających. Ogień został pozbawiony bariery powstrzymującej go przed wydostaniem się na zewnątrz. W ciągu kilku sekund pióropusz zwiększył swoje rozmiary i intensywność. Ciśnienie wewnątrz prawej rakiety pomocniczej zaczęło spadać z powodu rosnącej dziury w poszyciu rakiety i wydostającego się przez nią gazu. Po 60,238 sekundy można było już zaobserwować płomienie wydostające się z rakiety i omiatające zbiornik zewnętrzny (ET).

W T+64,660 pióropusz nagle zmienił kształt, co wskazuje, że płomienie wywołały wyciek ciekłego wodoru, którego zbiorniki znajdowały się w tylnej części zbiornika zewnętrznego. Dysze silników głównych na rozkaz komputera zmieniły położenie, kompensując w ten sposób dodatkowy ciąg generowany przez gaz wylatujący przez dziurę w rakiecie dodatkowej na paliwo stałe. Ciśnienie w zbiorniku ciekłego wodoru zbiornika zewnętrznego zaczęło spadać w T+66,764, wskazując na postęp wycieku.

Na tym etapie lotu sytuacja nadal wyglądała normalnie zarówno dla astronautów, jak i dla kontrolerów lotu. W 68. sekundzie lotu, CAPCOM, czyli kontroler lotu odpowiedzialny za łączność z astronautami, przekazał załodze promu, że silniki ponownie pracują na 104% ciągu słowami „Challenger, go at throttle up”. Dowódca promu, Francis Scobee, potwierdził: „Roger, go at throttle up”. Odpowiedź ta była ostatnimi słowami odebranymi z „Challengera” przez węzeł łączności powietrze-ziemia.

Rozpadnięcie się rakiety

T+72,284: prawa rakieta SRB oderwała się od dolnej struktury mocującej ją do zbiornika zewnętrznego. Późniejsza analiza telemetrii pokazała, że nagłe przyspieszenie spowodowane tym zdarzeniem, w T+72,525, mogło być odczuwalne dla załogi. Ostatnie dźwięki nagrane przez pokładowy rejestrator, około pół sekundy po odnotowaniu wspomnianego przyspieszenia, to nieartykułowany dźwięk (jęknięcie z bólu? jęk zawodu?) wydany przez pilota Michaela Smitha. Mogła to być też jego reakcja na zmianę wskaźników przedstawiających pracę głównych silników lub spadającego ciśnienia w zbiorniku wodoru w zewnętrznym zbiorniku.

T+73,124: obudowa położonego u dołu zbiornika ciekłego wodoru ulega uszkodzeniu i pod wpływem siły odrzutu wpadła na położony wyżej zbiornik z ciekłym tlenem. W tym samym czasie prawa rakieta SRB obróciła się wokół górnego mocowania i uderzyła w poszycie przestrzeni między zbiornikami wewnętrznymi ET.

Rozpadanie się rakiety rozpoczęło się w 73,162 sekundy po starcie, na wysokości 14,6 kilometra. Rozpadający się zewnętrzny zbiornik spowodował, że cały zespół rakieta-prom zmienił położenie względem lokalnego przepływu powietrza i momentalnie został rozerwany przez ogromne siły oporu aerodynamicznego. Konstrukcja promu doznała wtedy przyspieszeń rzędu 20 g – znacznie więcej niż wartości na jakie była projektowana. Obie rakiety dodatkowe na paliwo stałe, mogące znieść większy opór i przeciążenia, oderwały się od zbiornika ET i kontynuowały niekontrolowany lot z pełnym ciągiem przez kolejne 37 sekund. Obudowa rakiet SRB, wykonana z metalu grubości pół cala (12,7 mm) była znacznie wytrzymalsza niż poszycie promu czy zbiornika zewnętrznego. Z tego względu rakiety SRB przetrwały rozpad rakiety, nawet mimo to że prawa nadal doznawała wycieku, który zapoczątkował całą serię zdarzeń prowadzących do zniszczenia promu „Challenger” w locie.

Reakcje w kontroli misji

Na kilka sekund po katastrofie w pomieszczeniu kontroli misji zapadła cisza. Ekrany pokazywały chmurę dymu w miejscu, gdzie był „Challenger” i spadające do oceanu odłamki. W 89. sekundzie lotu dyrektor lotu Jay Greene zapytał kontrolera dynamiki lotu o informacje. Ten odpowiedział, że „radar pokazuje wiele źródeł”, co było dalszą wskazówką, że „Challenger” rozpadł się. Kontroler łączności zaraportował „brak łączności, straciliśmy przychodzące połączenia” radiowe i telemetryczne z „Challengera”. Greene rozkazał, aby każdy „uważnie przyglądał się napływającym danym”.

T+110,250: oficer bezpieczeństwa kosmodromu w stacji sił powietrznych Cape Canaveral wysłał sygnał radiowy aktywujący układ samozniszczenia rakiet dodatkowych na paliwo stałe. Była to normalna procedura podejmowana przez oficera bezpieczeństwa, gdy ten uzna, że opadające rakiety mogą stanowić zagrożenia dla obiektów na ziemi lub morzu. Ten sygnał wywołałby również zniszczenie zbiornika zewnętrznego, gdyby ten nie uległ zniszczeniu wcześniej.

Kontrolerzy lotu bardzo uważnie przyglądają się sytuacji”, lakonicznie oświadcza pełniący obowiązki komentatora wzlotu STS-51-L oficer ds. interesu publicznego (public affairs), Steve Nesbitt. „Nie ma wątpliwości, że to poważna anomalia. Nie otrzymujemy danych.”. Po chwili, Nesbitt dodaje: „Oficer dynamiki lotu donosi, że pojazd eksplodował”.

Greene wydaje polecenie zainicjowania procedur awaryjnych w budynku kontroli misji. Obejmują one między innymi zamknięcie i zabezpieczenie wszystkich wejść do centrum kontroli, zerwanie połączeń ze światem zewnętrznym i upewnienie się, że poprawnie zarejestrowano i zabezpieczono dane.

Eksplozji nie było

Pomimo pierwotnego oświadczenia oficera dynamiki lotu, prom i zbiornik zewnętrzny nie wybuchły. Zbiornik zewnętrzny został zmiażdżony przez siły oporu aerodynamicznego – prom przechodził wtedy przez punkt maksymalnego ciśnienia dynamicznego. Gdy zbiornik zewnętrzny został zgnieciony, uwolnił znajdujące się w nim paliwo (wodór) i utleniacz (tlen), które utworzyły chmurę podobną do kuli ognistej. Jednak tak naprawdę nie doszło do zapalenia się paliwa. Wodór i tlen, składowane w warunkach kriogenicznych, utworzyły obłok gazu, który nie miał warunków do zapłonu i wybuchu w zwyczajowym znaczeniu tego słowa. Gdyby eksplozja faktycznie nastąpiła, cały prom z załogą i rakiety dodatkowe również uległyby zniszczeniu. Jednak zarówno kabina załogi jak i rakiety SRB kontynuowały lot po zniszczeniu zbiornika zewnętrznego. Rakiety zostały później zdetonowane na polecenie oficera bezpieczeństwa, a w T+75,237 zaobserwowano, jak kabina załogi opuszcza gazowy obłok i kontynuuje lot po trajektorii balistycznej. W 25 sekund później osiąga ona maksymalną wysokość – 19,8 km.

Przyczyna i czas śmierci załogi

Wytrzymalsza kabina załogi przetrwała rozpad rakiety i promu w dość dobrym stanie. NASA oszacowało, że podczas rozpadu była ona poddana przeciążeniom od 12 do 20 g przez około 2 sekundy. Po tym czasie wynosiło już tylko 4 g, a już po 10 sekundach kabina swobodnie opadała. Przyspieszenie to było więc zbyt małe, by wywołać poważne obrażenia. Przynajmniej kilkoro z astronautów przeżyło rozpad i przynajmniej przez krótki czas po nim było przytomnych. Świadczy o tym fakt, że trzy z czterech odnalezionych osobistych zasobników powietrza (PEAP) zostały uruchomione. Należały one do Ellisona Onizuki, Judith Resnik i Michaela Smitha. Przycisk włączający zasobnik Smitha znajdował się za jego fotelem, co oznacza, że albo Ellison albo Judith musiała go włączyć. Śledczy stwierdzili, że te trzy zasobniki były używane i brakowało w nich mniej więcej tyle powietrza, ile astronauci zużyliby przez pozostałe 2 minuty i 45 sekund lotu aż do zderzenia z oceanem. Nie wiadomo jednak, czy i ilu z nich było przytomnych przez ten czas. W znacznej mierze zależy to od faktu, czy kabina zachowała hermetyczność i ciśnienie. Jeśli nie, na tej wysokości byliby świadomi jedynie przez kilka sekund, gdyż osobiste zasobniki nie dostarczały powietrza o ciśnieniu odpowiednim dla tej wysokości. Przy rozhermetyzowaniu kabiny byłyby więc nieprzydatne. Kabina załogi uderzyła w powierzchnię oceanu z prędkością ok. 334 km/h, co spowodowało wyhamowanie z przeciążeniem ponad 200 g – daleko ponad granicę wytrzymałości konstrukcji kabiny i organizmu ludzkiego.

28 lipca 1986 kontradmirał Richard Truly, współpracownik NASA do spraw lotów kosmicznych i były astronauta, opublikował raport Josepha Kerwina, specjalisty od biomedycyny w Centrum Lotów Kosmicznych imienia Lyndona B. Johnsona. Doktor Kerwin, który brał udział w misji Skylab 2, został wyznaczony do opracowania raportu o przyczynie zgonu załogi wkrótce po wypadku. Według raportu:

Ustalenia te nie są rozstrzygające. Uderzenie przedziału załogi o powierzchnię oceanu było tak gwałtowne, że zamaskowało uszkodzenia doznane przez prom w pierwszych sekundach katastrofy. Końcowe wnioski brzmią:

  • przyczyny śmierci załogi „Challenger” nie mogą zostać ustalone w sposób ostateczny
  • siły działające na załogę podczas rozpadu promu najpewniej nie były wystarczające do wywołania poważnych obrażeń czy też śmierci
  • załoga, prawdopodobnie, ale nie na pewno, straciła przytomność w kilka sekund po rozpadzie wahadłowca, z powodu utraty ciśnienia powietrza w kabinie

Ucieczka załogi była niemożliwa

Podczas lotu zasilanego, czyli przy włączonych silnikach, załoga w żaden sposób nie mogła wydostać się z promu. Co prawda system ewakuacyjny dla załogi był rozważany wielokrotnie podczas opracowywania wahadłowców, jednak NASA uznała, że wysoka niezawodność statków wykluczać będzie potrzebę montowania takiego systemu. Podczas pierwszych czterech misji, traktowanych jako testowe, do ewentualnej ewakuacji zamontowano zmodyfikowane fotele katapultowe z samolotów SR-71 Blackbird oraz pełne skafandry ciśnieniowe – załogi tych lotów były jednak mniej liczne. Stworzenie systemu ewakuacji dla pełnej załogi uznano za niedogodne z powodu „ograniczonej użyteczności, technicznej złożoności, wysokiego kosztu, masy, i ewentualnych opóźnień związanych z wdrażaniem”.

Po stracie „Challengera”, kwestia ta została ponownie rozważona. NASA rozpatrzyła wiele różnych rozwiązań, jak katapultowane fotele, rakiety dźwigające czy wyrzucenie na spadochronie poprzez dno wahadłowca. Jednakże ponownie uznano, że wszystkie rozważane rozwiązania wymagałyby zbyt istotnej ingerencji w wahadłowce i zmniejszenia ilości zabieranych pasażerów. System wyrzucania załogi przez dno był projektowany z myślą o opuszczeniu wahadłowca podczas lotu szybowcowego, nie mógłby więc zostać użyty podczas wypadku „Challengera”.

Po tragedii

Zaraz po katastrofie, NASA została skrytykowana za brak otwartości wobec mediów. „The New York Times” zwrócił uwagę, że dzień po wypadku „ani Jay Greene, dyrektor lotu, ani żadna inna osoba z hali kontrolnej, nie była dostępna dla prasy”. Wobec braku wiarygodnych źródeł, prasie pozostały wyłącznie spekulacje; zarówno „The New York Times” jak i United Press International sugerowały, że awaria nastąpiła w zbiorniku zewnętrznym, mimo że wewnętrzne dochodzenie w NASA szybko skupiło się na rakietach dodatkowych jako sprawcach tragedii. Reporter William Harwood napisał:

Agencja kosmiczna utknęła w postanowieniu o ścisłym utajnieniu szczegółów śledztwa, tak nie przystającym do instytucji szczycącej się długą tradycją otwartości.

Hołd ofiarom

W wieczór po katastrofie prezydent Stanów Zjednoczonych Ronald Reagan miał wygłosić coroczne przemówienie o stanie państwa. Początkowo oświadczył, że odbędzie się ono planowo, ale pod rosnącymi naciskami przełożył je o tydzień, a wygłosił za to z Gabinetu Owalnego orędzie do narodu o katastrofie „Challengera”. Zostało ono napisane przez Peggy Noonan i kończyło się poniższymi zdaniami, w których znalazły się słowa parafrazujące wiersz „High Flight” autorstwa Johna Gillespie’a Magee’a:

Nigdy ich nie zapomnimy, ani chwili, gdy widzieliśmy ich po raz ostatni, tego ranka, gdy przygotowywali się do drogi machając na pożegnanie, i „zrzucili więzy dusznej Ziemi”, by „dotknąć Oblicza Bożego.”

Trzy dni później, Reagan, wraz z pierwszą damą, pojechał do Centrum Lotów Kosmicznych imienia Lyndona B. Johnsona, by oddać hołd zmarłym astronautom. Prócz ich rodzin, na ceremonię przybyło około 6000 pracowników NASA.

Rodziny załogi „Challenger” utworzyły organizację Challenger Center for Space Science Education, jako trwały wyraz pamięci o nich. Organizacja utworzyła w USA pięćdziesiąt centrów edukacyjnych.

Ceremonie pogrzebowe

Szczątki załogantów, które można było zidentyfikować, zostały przekazane rodzinom 29 kwietnia 1986. Dwóch astronautów, Dick Scobee i Michael Smith, zostało pochowanych przez rodziny w osobnych mogiłach na narodowym cmentarzu w Arlington. Pozostali spoczęli 20 maja 1986 w zbiorowej mogile na tym samym cmentarzu. Mogiła jest jednocześnie pomnikiem.

Zbieranie szczątków promu

Już kilka minut po wypadku NASA wydała rozkaz o wysłaniu statków w miejsce opadnięcia szczątków promu i rakiety. Statki normalnie zostałyby wysłane do odzyskania rakiet dodatkowych na paliwo stałe. Do akcji wysłano także samoloty poszukiwawczo-ratownicze. Oficer bezpieczeństwa wstrzymał jednak zarówno samoloty jak i statki, gdyż odłamki nadal spadały do wody. Wysłano je dopiero, gdy uznano, że nic im nie grozi. Decyzję taką wydano po około godzinie.

Akcja poszukiwawcza trwała przez pierwszy tydzień po katastrofie, do 7 lutego. Prowadzona była przez Departament Obrony USA, na zlecenie NASA, a wspomagała ją Straż Wybrzeża Stanów Zjednoczonych. Według tej ostatniej, była to „największa akcja poszukiwawcza na powierzchni wody w jakiej brała udział”. Najdłużej poszukiwania prowadził okręt USS „Simpson”. Po tym czasie, poszukiwania były prowadzone już tylko przez zespół poszukiwań, odzyskiwania i rekonstrukcji. Jego celem było zebranie resztek mogących pomóc w określeniu przyczyn katastrofy. Do tego celu użyto sonarów, nurków oraz załogowych i zdalnie sterowanych łodzi podwodnych. Akcją objęto obszar około 1600 km² i prowadzono ją do głębokości 370 metrów. Do 1 maja wydobyto wystarczająco dużo fragmentów prawej rakiety dodatkowej, by stwierdzić pierwotną przyczynę wypadku. Wtedy też zakończono główną operację wydobywania szczątków. Akcja była kontynuowana na płytszych wodach, ale nie była już związana ze śledztwem, a z badaniami NASA dotyczącymi właściwości materiałów używanych w statkach kosmicznych i rakietach nośnych.

Fragmenty promu i rakiety były wyrzucane na plaże Florydy jeszcze wiele lat po wypadku. 17 grudnia 1996, prawie 11 lat po katastrofie, na plażę w Cocoa Beach morze wyrzuciło dwa duże fragmenty promu.

Na pokładzie „Challengera” znajdowała się amerykańska flaga, zasponsorowana przez 514. Chłopięcy Zastęp Skautów z Monument. Odzyskano ją w stanie nienaruszonym, w pojemniku, w którym umieszczono ją w ładowni.

 

Powiązane wydarzenia

OsobaData wydarzeniaJęzyk
1Kosmosā tiek palaists Džeimsa Veba kosmiskais teleskopsKosmosā tiek palaists Džeimsa Veba kosmiskais teleskops25.12.2021lv
2ASV zinātniekiem pirmoreiz cilvēces vēsturē izdevies pacelt lidojumā nelielu helikopteru uz citas planētas- uz Marsa. Ingenuity ASV zinātniekiem pirmoreiz cilvēces vēsturē izdevies pacelt lidojumā nelielu helikopteru uz citas planētas- uz Marsa. Ingenuity 19.04.2021lv
3Uz Marsu tiek palaists NASA robots Perseverance kādreiz tur eksistējušas dzīvības pazīmju meklēšanaiUz Marsu tiek palaists NASA robots Perseverance kādreiz tur eksistējušas dzīvības pazīmju meklēšanai30.07.2020lv
4Budapeštā nogrimis upes kruīzu kuģis, vismaz 7 cilvēki gājuši bojā un 19 pazudušiBudapeštā nogrimis upes kruīzu kuģis, vismaz 7 cilvēki gājuši bojā un 19 pazuduši29.05.2019lv
5At least 40 killed as overloaded ferry sinks in Tigris river, IraqAt least 40 killed as overloaded ferry sinks in Tigris river, Iraq21.03.2019en, lv, ru
6
Uz Marsu dodas ASV ģeoloģiskās pētniecības robots "InSight"05.05.2018lv
7W Nigerii rozbił się Boeing 737 nigeryjskich linii lotniczych ADC Airlines. Zginęło 97 osób (w tym jedna na ziemi), a 10 zostało rannychW Nigerii rozbił się Boeing 737 nigeryjskich linii lotniczych ADC Airlines. Zginęło 97 osób (w tym jedna na ziemi), a 10 zostało rannych29.10.2006en, fr, pl
8Katastrofa lotnicza w TeheranieKatastrofa lotnicza w Teheranie06.12.2005en, fr, pl
9Amerykański SpaceShipOne jako pierwszy prywatny załogowy samolot kosmiczny odbył lot w kosmosAmerykański SpaceShipOne jako pierwszy prywatny załogowy samolot kosmiczny odbył lot w kosmos21.06.2004lv, pl
10Podczas powrotu z przestrzeni kosmicznej uległ awarii i zniszczeniu wahadłowiec Columbia; zginęło 7 astronautówPodczas powrotu z przestrzeni kosmicznej uległ awarii i zniszczeniu wahadłowiec Columbia; zginęło 7 astronautów01.02.2003en, lv, pl, ru
11Katastrofa lotu Siberia Airlines 1812Katastrofa lotu Siberia Airlines 181204.10.2001de, en, fr, lv, pl, ru, ua
12Katastrofa samolotu Ił-18 koło BatumiKatastrofa samolotu Ił-18 koło Batumi25.10.2000pl, ru
13Ukraiński samolot pasażerski Jak-42 rozbił się w górach niedaleko greckich Salonik, w wyniku czego zginęło 70 osóbUkraiński samolot pasażerski Jak-42 rozbił się w górach niedaleko greckich Salonik, w wyniku czego zginęło 70 osób17.12.1997en, pl, ru
14Krótko po starcie z lotniska Twer-Migałowo w Rosji rozbił się wojskowy samolot transportowy An-22, w wyniku czego zginęły wszystkie 33 osoby na pokładzieKrótko po starcie z lotniska Twer-Migałowo w Rosji rozbił się wojskowy samolot transportowy An-22, w wyniku czego zginęły wszystkie 33 osoby na pokładzie11.11.1992pl
15103 osoby zginęły w katastrofie irańskiego samolotu wojskowego Lockheed C-130 Hercules w górach koło Zahedanu103 osoby zginęły w katastrofie irańskiego samolotu wojskowego Lockheed C-130 Hercules w górach koło Zahedanu02.11.1986pl
16
9 osób zginęło w wyniku eksplozji rakiety Kosmos 11K65M na radzieckim kosmodromie w Plesiecku26.06.1973pl
17Pirmais auto uz Mēness virsmas. ElektromobīlisPirmais auto uz Mēness virsmas. Elektromobīlis30.07.1971lv
18Trzej kosmonauci zginęli podczas powrotu na Ziemię kapsuły radzieckiego statku kosmicznego Sojuz 11Trzej kosmonauci zginęli podczas powrotu na Ziemię kapsuły radzieckiego statku kosmicznego Sojuz 1129.06.1971pl
19Uz Mēness tiek nosēdināts PSRS "robots"- LunohodsUz Mēness tiek nosēdināts PSRS "robots"- Lunohods17.11.1970lv
20
77 osób zginęło, a 2 zostały ranne w katastrofie należącego do Imperial Airlines samolotu Lockheed Constellation w Richmond w amerykańskim stanie Wirginia08.11.1961pl

Źródła: wikipedia.org

    Osoby

    Osoba Data ur. Data śm. Język
    1Ronald McNairRonald McNair21.10.195028.01.1986de, en, pl, ru
    2Judith ResnikJudith Resnik05.04.194928.01.1986de, en, pl, ru, ua
    3Christa McAuliffeChrista McAuliffe02.09.194828.01.1986de, en, pl, ru
    4Ellison OnizukaEllison Onizuka24.06.194628.01.1986de, en, pl, ru, ua
    5Michael John SmithMichael John Smith30.04.194528.01.1986de, en, pl, ru
    6Gregory JarvisGregory Jarvis24.08.194428.01.1986de, en, pl, ru, ua
    7Francis ScobeeFrancis Scobee19.05.193928.01.1986de, en, pl, ru
    Tagi